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Abstract 

The main task of WP5 is the identification and description of the fundamental reactions of 
defect formation within the various processing steps involved in the manufacturing of modern 
nano-electronic devices. Within the first months of the reporting period, the activities have been 
coordinated between the different workpackage tasks. Due to the extensive experience and 
knowledge of the involved partners new simulation approaches have been quickly developed 
and employed. The main focus on this first period has been on the complex and various 
mechanisms involved in thermal oxidation as well as on the statistical investigation of the 
intrinsic and hydrogen related defects in the amorphous SiO2 network. Furthermore, 
substantial efforts have been made to establish a machine learning based framework, capable 
of predicting important defect characteristics with reasonable accuracy in an efficient way. 
These results are of utmost importance for the kinetic Monte Carlo tool developed in Task 5.1 
which ultimately provides the benchmark models for the amorphous SiO2 and the Si/SiO2 
interface structures and also the TCAD framework of WP6 to accurately include the effects 
and implications of defects in the oxide layers.  

1 Oxidation 

The thermally grown Si/SiO2 system is one of the most studied interface systems, theoretically 
and experimentally. Nevertheless, the full picture of oxidation is a rather complex phenomenon 
ranging over a broad timescale and exhibits various mechanisms such as charge transfer 
reactions. Hence, it was necessary to develop a multiscale simulation approach to fully capture 
the peculiarities of each individual step. The complete oxidation process can be divided into 
three phases: First, the initial dissociation of the O2 molecule and the subsequent adsorption 
of the oxygen molecules on the reconstructed Si(100) surface. The partial to full coverage of 
the crystalline silicon surface. Third, the amorphization process which proceeds layer-by-layer 
due to the supply of oxygen molecules and atoms. For each mechanism a different hierarchical 
method, ranging from ab initio density functional theory to tight binding and up to classical force 
fields, is employed due to the different timescales available and the involved number of atoms.  

1.1 O2 dissociation and adsorption 
The purpose of these simulations is to identify the initial oxidation reaction on a (2x1) 
reconstructed Si(100) surface [1]. The starting point is an O2 molecule above the reconstructed 
surface, for which the undercoordinated Si atoms formed rows of alternating up- and down-
dimers to compensate for the unpaired electrons (one electron is transferred from the bottom 
to the top atom resulting in an approximate ionic character of the Si-Si bond). Subsequently, 
ab initio molecular dynamics simulations (AIMD) were conducted within the CP2k package [2], 
employing a DVZP basis set, at a temperature of 300K within a microcanonical ensemble. The 
total simulation time has been set to 1.5ps with a step size of 0.5fs. The results for this 
simulation can be seen in Fig. 1. 

In an initial step the O2 molecule travels towards a valley between two dimer rows and attaches 
to one of the two topmost Si atoms. This leads to a hybridization of the O2 π* orbitals (the O2 
in its ground state is a triplet configuration where both π* orbitals are occupied by single, 
unpaired electrons) with the surface states of the Si slab. After about 100-200fs one of the two 
Si atoms, where the O2 molecule initially adsorbed, donates one electron to the π* orbitals of 
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the oxygen molecule. This can be seen in Fig .1 as the rapid change of charge state of the two 
oxygen atoms, becoming negatively charged, and the surrounding Si atoms donating in total 
one electron. Subsequently, the oxygen molecule is left in an excited state spontaneously 
dissociates without a notable barrier. Finally, the two O atoms remain at the dimer or backbone 
site of the silicon atom. 

1.2 Oxygen coverage of the Si surface 
With the introduction of oxygen on the surface, the (mainly surrounding) silicon atoms 
experience an additional strain which leads to an electronic reconfiguration and slightly 
undercoordinated and electrophilic sites. Hence, a broader spectrum of barrierless 
chemisorption sites available for subsequent O2 molecules. In order to simulate larger 
structures and longer timescales, we employed a density functional based tight binding 
approach (DFTB) implemented in the DFTB+ package [3]. Molecular dynamics simulations 
with the intention of full surface coverage (i.e. a fully passivated surface) were run and yield, 
after a geometry optimization, two distinct configurations, see Fig. 2a and 2b. The two 
configurations can be identified as the zig-zag (Fig. 2a) and the ring (Fig. 2b) configuration. 
The ring structure is the energetically most stable one with the lowest energy, however, the 
zig-zag configuration is only about 0.35eV/dimer higher in energy, rendering it another 
metastable configuration at elevated temperatures. Furthermore, we found some additional 
slightly disordered configurations, see for example Fig. 2c, where individual oxygen atoms 
actually moved within a back-bonded configuration. Interestingly this configuration is around 
0.2eV lower in energy than the zig-zag configuration, however still around 0.15eV higher than 
the ring structure. Hence, at elevated temperatures such configurations can be considered as 
additional metastable surface coverages. Nevertheless, all resulting configurations clearly 
show that the oxygen atoms remain within Si-Si bonds at the surface and do not spontaneously 
diffuse within the Si network. This indicates that the process of oxidation is indeed a layer-by-
layer mechanism, in which subsequent silicon layers are only oxidized upon further supply of 

Figure 1: The results of the AIMD simulation. The oxygen molecule approaches the reconstructed Si surface and 
captures an electron from the topmost silicon atom of the dimer configuration. Subsequently the O2 molecule 
dissociates and the resulting oxygen atoms desorb on the Si surface in either a dimer or a backbone site. 

t = 0fs 

t = 50fs 

t = 500fs 
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O2 molecule on the surface which causes the already existing oxygen atoms to penetrate 
further into the crystalline silicon. 

 

1.3 Amorphization 
In order to provide a full picture of the oxidation and amorphization of thin film SiO2 layers, 
including the Si/SiO2 interface region, the aforementioned simulation approaches are not 
applicable due to the extensive timescales required for such calculations. Hence, we used a 
previously parameterized extended Stillinger-Weber potential [4], particularly parametrized to 
mimic the oxidation mechanism including a penalty parameter for the different oxidation states, 
within the molecular dynamics engine LAMMPS [5]. The procedure is as follows: First, a 
Si(100) slab with a total height of 40nm and 1792 atoms, with the last layer being fixed, has 
been equilibrated at a temperature of T=500K. Subsequently, 10 oxygen atoms are inserted 

Figure 2: Three distinct configurations for a full oxygen coverage of the Si(100) surface. From left to right : (a) The 
zig-zag structure, (b) the ring configuration, (c) a slightly disordered (metastable)  variant of the zig-zag configuration 
where individual O atoms moved within the back-bonded Si-Si bonds. 

(a) (b) (c) 

Figure 3: Snapshots of the oxidation simulations where around half of the available Si atoms have been 
oxidized (left), and almost the entire slab is consumed by SiO2 (middle). A close-up of the direct interface 
region between crystalline Si and amorphous SiO2. 
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between Si-Si bonds directly at the surface, where after each insertion the geometry gets 
optimized to avoid any artificial strain. After 10 atoms have been inserted, a MD run is 
conducted with 100000 steps at the given temperature to facilitate bond breaking and 
reconfiguration which leads to the amorphization of the structure. Hence, oxidizing the silicon 
slab happens in portions of 10 O atoms with intermediate MD runs. Only if the silicon layer has 
been fully oxidized, i.e. SiO4 tetrahedrons have been formed, the next layer will be filled with 
oxygen atoms.  Fig. 3 shows the images of a Si/SiO2 interface system where half of the slab 
(a) has been oxidized, and almost the full silicon structure transformed into SiO2 (b), 
respectively. 

One can see that the interface between Si and SiO2 is not fully abrupt and that the Si positions 
around two layers away from the interface still deviate from their original position within the 
crystalline lattice. However, this was confirmed by previous experimental studies using ion 
backscattering measurements as well as optical spectroscopy. Furthermore, this methodology 
results in a non-stochiometric SiO2 structure and will be used to extract the intrinsic defect 
concentration. The necessity of larger structures including well beyond 10000 atoms, will be 
evaluated for this purpose. One can conclude that the utilized approach agrees well with the 
experimental perceptions and the resulting models and insights can be used to improve the 
developed kinetic Monte Carlo (kMC) code of WP5.1 and furthermore act as an additional 
benchmark of the structures used in WP5.2. 

2 Defects in SiO2 

Intrinsic point defects, such as the oxygen vacancy (OV) are unavoidable in the amorphous 
SiO2 network. Additionally, hydrogen related oxide defects have gained lots of interest in the 
recent past and are believed to be responsible for device degradation issues such as the bias 
temperature instability (BTI).  

Once hydrogen is introduced into the system, i.e. during a forming gas anneal, it can diffuse 
through the oxide and trigger additional reactions and create point defects such as the 
hydrogen bridge (HB) and the hydroxyl E’ (HE’) center. The HB is a transformed OV where the 
H atom attaches to one of the Si atoms, whereas for the HE’ center the hydrogen breaks a 
preexisting Si-O bond and forms a hydroxyl group together with one undercoordinated Si atom. 

All three defect configurations have active defect levels inside the SiO2 band gap, i.e. their 
charge transition levels -/0 and 0/+ are within the band gap of the oxide, and hence can interact 
with charge carriers in the channel of a MOSFET. Upon charge capture and emission, which 
is properly described using non-radiative multiphonon theory, defects undergo structural 
relaxations which is an important measure and characteristics in the modeling framework. 
Thus, the initial modeling efforts have been made to identify and characterize a larger number 
of defect configurations for the OV, the HB, and the HE’ within amorphous bulk SiO2. These 
are crucial information used in WP6 and the corresponding TCAD framework. 
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2.1 Methodology 
The SiO2 models including the defect configurations have been calculated using density 
functional theory (DFT) using the Gaussian plane wave code CP2k [2]. GTH pseudopotentials 
in conjunction with a double-zeta basis set and an 
energy cutoff of 800Ry have been employed to 
ensure well converged results. The nonlocal 
hybrid functional PBE0 in combination with an 
auxiliary basis set has been used to maintain a 
high level of accuracy and reasonable 
computational efforts. All geometry optimizations 
have been performed using the BFGS algorithm 
where forces on the individual atoms have been 
reduced down to 0.025eV/A.  

The initial host material, i.e. the defect free SiO2 
model, contains 216 atoms, see Fig. 4, and has 
been created using molecular dynamics and the 
well-known melt and quench technique in 
conjunction with the classical force field ReaxFF 
[6]. The resulting structures have been 
subsequently optimized to ensure a strain free 
bulk SiO2 model. 

 

2.2 Results 
In the following, the three discussed defect types, the OV, HB and HE’, see Fig. 4, are analyzed 
for three different charge states, Q=0/-1/+1. The initial defects have been created in the 
following way: For the OV, one single oxygen atom has been removed, for the HB the oxygen 
atom was replaced by a hydrogen atom, while for the HE’ center a hydrogen atom was placed 
in the direct vicinity of a bridging O atom. This procedure was repeated for each of the 144 
oxygen atoms in the SiO2 structure and subsequently relaxed in the different charge states.  

 

First, the formation energy 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  of a defect has been calculated, which is given by 

𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐸𝐸𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡 −�𝜇𝜇𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑞𝑞𝐸𝐸𝐹𝐹 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖

      (1) 

where 𝐸𝐸𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡is the total energy of the system with the defect in charge state Q,  𝐸𝐸𝑏𝑏𝑢𝑢𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡  is the total 
energy of the defect free neutral bulk model, 𝜇𝜇𝑖𝑖𝑛𝑛𝑖𝑖 is the chemical energy needed to add or 
remove atoms of kind i to the bulk in order to create a defect, 𝑞𝑞𝐸𝐸𝐹𝐹 is the elementary charge 
times the Fermi level, and 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 is a correction term due to the periodic boundary conditions 
and in combination with a charged system. 

The formation energies of the neutral defect configurations are calculated with respect to the 
pristine bulk system. However, this might overestimate their values, since they are typically 
naturally formed during the oxidation process, which cannot be included here. For the HB and 
the HE’ center the precursor configurations are an oxygen vacancy and a bridging oxygen 
atom, respectively. The OV and the HE’ center formation energies can be properly described 

Figure 4: Well optimized and defect free bulk SiO2 
model with periodic boundary conditions. 
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by a normal distribution, while for the HE’ center on the other hand, the distribution of formation 
energies is highly asymmetric, and hence was fitted with a Weibull distribution. 

For all defect configurations we distinguish between normal and puckered, or back-bonded, 
configurations. For such a puckered configuration the oxygen atom moves through the plane 
of the adjacent silicon atoms and back-bonds to another silicon atom. Our findings show that 
the puckered OV configuration has substantially higher formation energy and it is thus unlikely 
to form within our calculations.  

The charge transition level (CTL) for the different defect configurations can be calculated by 
comparing the formation energies (1) of different charge states. The Fermi level is with respect 
to the valence band maximum which is assumed to be the highest occupied Kohn-Sham orbital 
of the bulk system. The correction term 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 was approximated to be 0.35eV according to the 
scheme of Makov and Payne [7]. The CTL corresponds to the Fermi level where the charged 
and neutral formation energy possesses the same value, and hence are equally likely. It is one 
of the fundamental characteristics of a defect as it can be detected by electrical measurements 
and its alignment with the carrier reservoir, i.e. the channel of the device, substantially affects 
the reliability behavior of the technology. The CTLs for the three different defect configurations 
and the transitions +/0 and 0/- have been caclulated. The band gap of the silicon bulk is around 
1.2eV according to our DFT calculations. The calculated values nicely match with the well-
known values for the band alignment between Si and SiO2. Furthermore, only defects are 
considered for the CTL calculations where the additional charge could be properly localized at 
the defect site for both charge states. The accumulated CTL for the HB and the HE’ center 
resemble a normal distribution, while the CTL of the unpuckered OV were again fitted with a 
Weibull distribution for both charge transitions. For the OV defects, the majority of CTLs for 
both charge transitions are far below the valence band (+/0) or far above the conduction band 
(-/0) of the silicon bulk. Hence, it is very unlikely for them to interact with the carrier reservoir. 
The only exception are OV defects in the puckered configuration, with their CTLs being inside 
the band gap of silicon. This result confirms the assumption that the OV is not responsible for 
charge trapping processes during operation in MOSFET devices. The other two defect 
candidates however possess reasonable defect levels close to the silicon valence or 
conduction band edge. The peaks of the HB distributions are both close to the band edges of 
the substrate, similarly to the electron traps of the HE’ center, while the hole traps of HE’ center 
are distributed largely across the silicon band gap.  

Hence, it is assumed that the HB in combination with the HE’ center are mainly responsible for 
charge trapping effects such as bias temperature instability in silicon based MOSFET devices. 
These results will aid the TCAD description in WP6. 

Additionally, we have analyzed the correlation of the CTLs or formation energy and geometrical 
properties of the defects. This information reflects the likelihood of a certain CTL and links it to 
structural characteristics which can be beneficial for the kMC description in WP5.1. Hence, we 
have analyzed the correlation of the formation energies and the calculated CTLs. For the OV  
a meaningful measure is the distance between the two silicon atoms before the oxygen  atom 
has been was removed, for the HB a correlation between two silicon atoms of an OV before 
the hydrogen was attached and the CTL/ 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 was found, while the HE’ center it shows a 
strong dependence on the distance between a silicon and oxygen atom before the hydrogen 
was bonded to the oxygen atom and formed a hydroxyl group.  
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Unpuckered oxygen vacancies with CTLs closer to the band edges of the silicon substrate are 
less likely to form and thus OVs tend to play an even smaller role in reliability issues. Hydrogen 
bridges are preferably forming at prolonged Si-Si distances of an OV. The CTLs for the HB 
hole traps with the lowest formation energies are below the valance band maximum of silicon  
while the CTLs in the middle of the band gap are less likely to form. This is similar for HB  
electron traps, where the defects with the lowest 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 have CTLs close to the conduction 
band edge of the substrate while for higher formation energies the CTLs tend to be located in 
the band gap. For the HE’ center defects, the hole trapping defects that are most likely to form 
are also the defects which are most likely to capture a hole from the substrate. The CTLs of 
the  electron traps are distributed close to the conduction band edge for the entire 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 range. 

3 Application of Machine Learning 

The above defect studies require extensive computational efforts due to the use of DFT. 
Hence, the main disadvantage is that such studies are limited to small systems on the order 
of a few hundred atoms, or smaller statistics. In this context, machine learning (ML) offers very 
promising solutions to perform the required calculations, by achieving results with an accuracy 
comparable to DFT, while requiring only a small fraction of its computational cost.  

 

Hence, two approaches have been developed to aid the study of modern devices reliability: 
(1) a ML solution to predict the formation energy of defects and (2) a ML solution to predict the 
structure of these defects. In both cases, the material under consideration was amorphous 
SiO2 and the defects under consideration were hydroxyl E’ center configurations. Studying 
these defects, especially their formation during device processing, is of great importance, 
particularly with respect to WP5.1. In order to build a reliable ML model to predict electronic 
properties, it is first necessary to adequately train the framework. Hence, in total 16 SiO2 
models have been used from the above defect study and overall 1271 hydroxyl E’ center 
defects have been calculated within DFT and the GGA approximation. Within Fig. 5 one can 
see the distribution of formation energies and their correlation to the most important structural 
measure, the initial Si-O bond length of the pristine SiO2 bulk system. 

Figure 5: Left: Distribution of the formation energies, together with its mean and the standard deviation. Right: 
Correlation between the formation energy and the characteristic length of the initial Si-O bond which is broken due to 
the attachment of a hydrogen atom. 
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3.1 Prediction of Formation Energies 
As previously mentioned, we first developed a ML based solution to predict the formation 
energies of defects. The goal was to achieve predictions as accurate as possible, while 
drastically reducing the computational costs.   

Our proposed workflow is 
presented in Fig. 6. It was 
applied to predicting the 
formation energies of 
hydroxyl E’ center defects 
in a-SiO2. The first step to 
produce ML based 
property predictions 
from atomistic structures is to 
represent the training and 
testing structures in a 
way which is compatible 

with the selected ML model. This representation is 
done with a descriptor. In this work, the descriptors 
which were considered are atom-centered symmetry 
functions (ACSF) and smooth overlap of atomic 
positions (SOAP), as implemented in the python 
package DScribe [8]. We also considered our own 
descriptor which is purely based on geometrical 
measures, namely bond-lengths and bond-angles 
(BLBA) - developed for this purpose by our research 
team, see [9]. 

Once the structures in the training and testing 
datasets are properly represented, the next step is 
to train the ML model. The ML models selected for 
this application were neural network (NN), kernel 
ridge regression (KRR) and decision tree (DT), as 
implemented in the scikit-learn software package 
[10]. These models were selected based on their 
versatility and their common use in the relevant 
literature. In total, 9 different combinations of 
descriptors and ML models have been studied. The 
results are shown in Fig. 7.  The same dataset was 
applied to all ML models. It was built by randomly 
selecting and dividing the original dataset into 80% 
for training and 20% for testing purposes. One can 

see in Fig. 7 that the combination of the SOAP descriptor with the NN performed best, with a 
mean absolute error (MAE) of only about 0.26eV. On the other hand the combination of the 
ACSF descriptor with the decision tree performed worse with a MAE of almost 0.4eV. However, 
note that all variants result in a reasonable prediction which can be considered as sufficiently 
accurate for on-the-fly predictions of formation energies, particularly with a kinetic Monte Carlo 
description to simulate the oxidation and annealing process. 

 

Figure 6: Proposed workflow to predict a characteristic feature of the defect 
of interest. The environment around the defect is represented by a 
descriptor and subsequently used within the ML model to predict the 
formation energy of the defective site. 

Figure 7: Error distribution and mean absolute 
error of the predictions of formation energies 
using 9 combinations of models and descriptors. 
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3.2 Prediction of Defect Structures 
The present section introduces the ML based approach to predict the structures of defects in 
atomistic structures. As in the previous development, the target implementation is the study of 
hydroxyl E’ center defects in amorphous SiO2 structures. The objective is to produce structures 
as similar as possible as those obtained by DFT relaxation, while drastically reducing the 
computational costs.  

The proposed workflow is presented in Fig 8, which consists of three steps 

1) Prediction: Representation of the local environment of the region of interest with a 
descriptor within the defect free structure; Using this descriptor as an input to a ML 
model to predict the descriptor of the resulting defect structure.  

2) Optimization: Using an optimization method to adjust the positions of the atoms in the 
defect free structure until its descriptor matches the descriptor predicted by the ML 
model for the defect structure. Therefore, at the end of this step, a ML predicted defect 
structure is produced.  

3) Validation: The final step of the process is validating the results. This is done by 
comparing the ML predicted defect structure with the equivalent target structure 
produced by DFT relaxation. This is only possible for those structures included in the 
training and/or testing data set. The validation measure is the descriptor for both 
structures around the defect site using a mean square error measure. 

 

An example of such a prediction and optimization process is shown in Fig. 9. It shows the initial 
defect free SiO2 structure (left), the machine learning predicted defect structure (center) and 
the equivalent DFT-relaxed structure (right). Furthermore, it shows the optimization phase as 
the difference between the ML predicted structure and the DFT-relaxed structure as the 
optimization process progresses (measured as the mean squared error between the SOAP 

Figure 8: Proposed workflow to predict the structure of defects in atomistic structures. First, the local environment 
around the atom of interest in the defect free structure is represented by a descriptor. This descriptor is used within 
a ML model to predict the descriptor of the defect structure. Subsequent optimization adjusts the positions of the 
atoms in the defect free structure until their descriptor matches the descriptor predicted with the ML model. 
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description of the local environment around the defect in the ML predicted structure and the 
DFT-relaxed structure). The whole optimization procedure was done in 0.46s.  

 

 

As a final measure we have used the average geometrical distance per atom within the region 
of interest between the ML predictions and the DFT relaxed structures. In total 50 structures 
have been randomly selected and 
analyzed, see Fig. 10. One can see are 
well within 1Å difference between the two 
methods (with a mean value of around 
0.25Å), which proves the reliable 
accuracy and robustness of the 
developed approach.  

 

 

 

 

 

 

 

 

Figure 9: Example of a prediction and optimization process. The final structure was predicted within one second. 

Figure 10. Benchmark of 50 ML predicted structures vs. DFT 
relaxed models. The graph shows the average geometrical 
distance per atom within the region of interest. 
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Conclusions 

We have presented a multitude of atomistic simulation results. First, we used a multiscale 
approach to identify the various steps of oxidation, starting from the initial phase of O2 
chemisorption on the reconstructed Si(100) surface to the subsequent coverage of the first 
layer and the various configurations up to the amorphization phase of several layers including 
the development of the Si/SiO2 interface. Further studies will be conducted on individual 
important reactions using DFT, such as the implications of different oxidation states of silicon 
across the oxidation process. However, the established results already provide detailed insight 
into the oxidation mechanisms and aid the reaction catalogue for WP5.1 and the developed 
kMC tool. 

Additionally, a broad and detailed defect study on the most prominent candidates in bulk SiO2 
has been conducted. We have identified fundamental characteristics such as their formation 
energies and charge transition levels covering a broad range of defect configurations. These 
results will directly be used in WP6 and the TCAD simulations to predict the behavior of the 
electronic devices. In the next step, additional simulations will reveal activation and 
transformation barriers of defect candidates by using nudged elastic band simulations within 
our DFT setup. Additionally, the interaction of hydrogen with the pristine and defective SiO2 
network will be investigated. However, due to the computational expenses of these 
calculations, only a reduced data set will be investigated. 

Furthermore, we have developed a machine learning framework which is able to predict the 
electronic and structural properties of defects with the amorphous SiO2 network. The promising 
results will be further extended and a possible application in WP5.1 will be investigated.  
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